Article

A Combinatorial Approach toward the Generation of Ambiphilic Peptide-Based Inhibitors of Protein:GeranyIgeranyl Transferase-1

Farid El Oualid, Hans van den Elst, Ingrid M. Leroy, Elsbeth Pieterman, Louis H. Cohen, Brigitte E. A. Burm, Herman S. Overkleeft, Gijs A. van der Marel, and Mark Overhand J. Comb. Chem., 2005, 7 (5), 703-713• DOI: 10.1021/cc0500203 • Publication Date (Web): 09 August 2005

Downloaded from http://pubs.acs.org on March 22, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

A Combinatorial Approach toward the Generation of Ambiphilic Peptide-Based Inhibitors of Protein:Geranylgeranyl Transferase-1

Farid El Oualid, ${ }^{\dagger, \delta}$ Hans van den Elst, ${ }^{\dagger},{ }^{\delta}$ Ingrid M. Leroy, ${ }^{\ddagger}$ Elsbeth Pieterman, ${ }^{\ddagger}$ Louis H. Cohen, ${ }^{\dagger}$ Brigitte E. A. Burm, ${ }^{\dagger}$ Herman S. Overkleeft, ${ }^{\dagger}$ Gijs A. van der Marel, ${ }^{\dagger}$ and Mark Overhand* ${ }^{\dagger}$
Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA 2300 RA Leiden, The Netherlands, and TNO Quality of Life, Gaubius Laboratory, Department of Vascular and Metabolic Diseases Business Unit Biomedical Research, P.O. Box 2215, 2301 CE Leiden, The Netherlands

Received February 11, 2005

Abstract

A combinatorial synthesis of oligopeptide analogues and their evaluation as protein:geranylgeranyl transferase inhibitors is presented. The combinatorial strategy is based on the random mutation, in each new generation, of one of any of the four amino acid building blocks of which the most effective compounds of the previous generation are assembled. In this way, a progressive improvement of the average inhibitory activity was observed until the fifth generation. The most active inhibitors were found to inhibit PGGT-1 in the low micromolar range ($\mathrm{IC}_{50}: 3.8-8.1 \mu \mathrm{M}$).

Protein isoprenylation, or the posttranslational modification of specific cysteine residues in nascent proteins with either a farnesyl group or a geranylgeranyl group, is a key event in the regulation of many biological processes. ${ }^{1}$ Of particular interest is the finding that isoprenylation of pro-Ras proteins, ${ }^{2}$ small GTPases that are instrumental in triggering many signal transducing pathways, is a prerequisite for their functioning. Oncogenic Ras, with the intrinsic GTPase activity impaired, ${ }^{3}$ are found in at least 40% of human tumors, and it is for this reason that many research laboratories, in academia and industry alike, have focused on the development of compounds that can interfere with Ras isoprenylation. ${ }^{4}$
The natural isoprenyl group found on Ras proteins is the farnesyl lipid, transferred from farnesyl pyrophosphate (FPP) to consensus cysteine residues through the action of the enzyme protein:farnesyl transferase (PFT). ${ }^{5}$ As a consequence, most research activities to date have focused on the development of PFT inhibitors. ${ }^{6}$ However, the enzyme protein:geranylgeranyl transferase-1 (PGGT-1) ${ }^{7}$ has emerged as an important alternative target for several reasons. First, there is the observation that upon blocking PFT, N-Ras and the most abundant human oncogenic Ras protein K-RasB are geranylgeranylated through the action of PGGT- $1 .{ }^{8}$ This indicates that blocking the action of PGGT-1, next to PFT, may prove equally important in the development of antitumor agents aimed at disabling Ras functioning. ${ }^{8,9}$ In addition, PGGT-1 inhibitors have been shown to be potential valuable agents for the treatment of smooth muscle hyperplasia, ${ }^{10 a}$ multiple sclerosis, ${ }^{10 \mathrm{~b}}$ parasitic infections, ${ }^{10 \mathrm{~cd}}$ osteoporosis, ${ }^{10 e f}$ atherosclerosis/restenosis, ${ }^{10 \mathrm{gh}}$ and hepatitis C virus infection. ${ }^{10 \mathrm{i}}$

[^0]In this framework, we have recently embarked on a program aimed at the development and evaluation of potential PGGT-1 inhibitors. ${ }^{11}$ In our search for an alternative class of compounds that could inhibit PGGT-1, we noted that (1) the action of PGGT-1 is highly reminiscent of that of PFT^{7} and (2) effective ambiphilic peptidic PFT inhibitors, having a polar head, that are assembled from simple building blocks connected through amide bonds have been reported. ${ }^{12}$ These observations led us to design a combinatorial strategy aimed at the generation of ambiphilic oligopeptides as potential PGGT-1 inhibitors, ${ }^{13}$ based on the use of commercially available building blocks. Our strategy, which further includes a random optimization item, ${ }^{14}$ can be summarized as follows (Schemes 1 and 2). An initial pool of 30 ambiphilic oligopeptides is assembled by standard Fmoc-based SPPS in a parallel fashion, from four sets of building blocks A-D (Figure 1). After release from the solid support and purification, the oligopeptides are screened for their propensity to inhibit PGGT-1, after which the 16 most potent compounds are selected. In the next round, in each of the 16 oligopeptides, one arbitrarily chosen building block is replaced by a new randomly chosen building block (Scheme 2). The resulting 16 mutant compounds are then synthesized and assayed, after which the 16 most active compounds from both generations are selected and the procedure is repeated.

The construction of the initial pool of 30 ambiphilic peptides entails the random selection of a diverse set of ABCD combinations, affording compounds with a polar headgroup (C-terminal carboxyl group) and a hydrophobic tail. The hydrophobic N-terminal and hydrophilic C-terminal subunits (A_{w} and D_{z}, respectively) were selected for this purpose. Mainly aromatic building blocks were selected for the hydrophobic N -terminal part (A_{w} set). Next to acidic

Scheme 1. Schematic Presentation of the Followed Optimization Procedure

Scheme 2. Schematic Example of One Building Block Mutation Procedure ${ }^{a}$

${ }^{a}$ G1-07: compound from generation 1 (G1) ranked \#7 according to inhibitory potency.

Figure 1. Ambiphilic peptides as potential PGGT-1 inhibitors.
residues, some neutral and basic residues were included in the D pool (Chart 4). Twenty-three building blocks make up set A_{w} (Chart 1), and 18 building blocks make up set D_{z} (Chart 4). On the basis of the assumption that the length of the hydrophobic tail is important with regard to inhibitory potency, ${ }^{7}$ spacer molecules B / C that vary in length and conformational restriction were selected. In addition, by allowing the option to omit one or both spacer molecules (empty position B01 and C01), an additional possibility to vary the length of the target compounds was introduced. ${ }^{15}$ Twenty-one building blocks make up set B_{x} (Chart 2) and 24 building blocks make up set C_{y} (Chart 3).

The efficacy of the iterative optimization procedure was evaluated by calculation of the average inhibitory percentage

of the 16 best inhibitors of each generation. As can be seen in Figure 2, the average inhibitory percentage increases gradually in the first few optimization rounds. Already in the second generation (Table 1), compound A03B02C14D16 (Scheme 3) is found to inhibit PGGT-1 for $\sim 95 \%$ at 100 $\mu \mathrm{M}$ concentration. After five generations (Table 1), no significant improvement is observed.

A different ranking of the 16 best inhibitors of generation 5 is obtained by looking at the percentage of inhibition at the $10 \mu \mathrm{M}$ concentration data points (Table 1). The slightly more potent inhibitor A03B10C14D16 (Scheme 3) now holds first place in this ranking, with 97% inhibition of enzyme activity, with A03B02C14D16 being second at 81\% inhibition of PGGT-1 activity. The IC_{50} values for these two

Chart 1. Set of A Building Blocks $(\mathrm{A} 01-\mathrm{A} 24)^{a}$

${ }^{a}$ Protective groups which are removed during the TFA mediated release of the product from the solid support are depicted in italic form.
Chart 2. Set of B Building Blocks (B01-B22) ${ }^{a}$

B05
B06

B12

B13

B17

${ }^{a}$ Protective groups which are removed during the TFA mediated release of the product from the solid support are depicted in italic form.
most effective PGGT-1 inhibitors were 8.1 ± 1.2 and $3.8 \pm$ $0.9 \mu \mathrm{M}$, respectively. ${ }^{16}$ Scheme 3 depicts the mutational pathway to these two compounds.

In conclusion, we have demonstrated that, using standard Fmoc-based SPPS and using commercially available building blocks, effective PGGT-1 inhibitors with IC_{50} values in the low micromolar range can be readily obtained. Obviously, it cannot be excluded that more potent inhibitors can be assembled from the four sets of building blocks; however,
we feel that our random mutation strategy enables the facile identification of the potency range enclosed within a given set of combinatorial building blocks. Furthermore, our strategy may have impact both on the generation of potential PGGT-1 inhibitors and on the rapid identification of bioactive compounds, assembled from building blocks from combinatorial pools, and directed against biological targets of an altogether different nature. Current research activities are focused on the elucidation of the precise mode of action of

Chart 3. Set of C Building Blocks $(\mathrm{C} 01-\mathrm{C} 24)^{a}$

${ }^{a}$ Protective groups which are removed during the TFA mediated release of the product from the solid support are depicted in italic form.
Chart 4. Set of D Building Blocks (D01-D18) ${ }^{a}$

002

08

014

003

D09

015

004

011

017
018
${ }^{a}$ Protective groups which are removed during the TFA-mediated release of the product from the solid support are depicted in italic form.
the inhibitory potential of the here-presented oligopeptidebased PGGT-1 inhibitors. ${ }^{16}$

Experimental Section

General. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Bruker Avance-400 $\left({ }^{1} \mathrm{H}=400 \mathrm{MHz},{ }^{13} \mathrm{C}=100 \mathrm{MHz}\right)$ or a Bruker DMX-600 $\left({ }^{1} \mathrm{H}=600 \mathrm{MHz},{ }^{13} \mathrm{C}=150 \mathrm{MHz}\right)$. Chemical shifts are given in parts per million (δ) relative to tetramethylsilane as internal standard ($\delta=0 \mathrm{ppm}$). Mass
spectra were recorded with a Perkin-Elmer/SCIEX API 165 mass instrument, and HR-MS spectra were recorded with an API QSTAR Pulsar (Applied Biosystems). Reversedphase HPLC analysis was performed on a Jasco HPLC system (detection simultaneously at 214 and 254 nm) equipped with an Alltima C18 100- $\AA, 5-\mu \mathrm{m}$ column ($4.6 \times$ 150 mm). Purifications were performed on a BioCad Vision (Applied Biosystems) HPLC system equipped with an Alltima C18 100- $\AA, 5-\mu \mathrm{m}$ column $(10 \times 150 \mathrm{~mm})$. The

Figure 2. Development of average inhibitory activity at $100 \mu \mathrm{M}$ of compound, expressed as percent of control activity, of the 16 best inhibitors per generation. $\mathbf{\Delta}$, inhibitory percentage value of best inhibitor; $\boldsymbol{\square}$, inhibitory percentage value of worst inhibitor.
applied buffer system was $\mathrm{A}, \mathrm{H}_{2} \mathrm{O} ; \mathrm{B}, \mathrm{CH}_{3} \mathrm{CN}$; and $\mathrm{C}, 1 \%$ aq TFA (effective 0.1%). In the case of compounds containing building blocks D04, D15, or D18, the best results were obtained by using $\mathrm{A}, \mathrm{H}_{2} \mathrm{O} ; \mathrm{B}, \mathrm{CH}_{3} \mathrm{CN}$; and $\mathrm{C}, 0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Ac}$ (effective 0.01 M). All solvents were of HPLC quality (Biosolve). All employed building blocks (A-D, Charts $1-4)$ were purchased from commercial suppliers and were of the highest quality available. The solid-phase peptide synthesis (SPPS) was performed on a LaMOSS2 (Labotec Modular Organic Synthesis System 2) robotic synthesizer using standard Fmoc chemistry and Wang solid support (loading $0.5-1.1 \mathrm{mmol} \mathrm{g}^{-1}$, NovaBiochem, 100-200 mesh, product no. 01-64-0014). Abbreviations used in this paper are as follows: $\mathrm{BOP}=$ benzotriazole-1-yloxytri(dimethylamino)phosphonium hexafluorophosphate; $\mathrm{DCM}=$ dichloromethane; $\mathrm{DIC}=N, N^{\prime}$-diisopropylcarbodiimide; DIPEA $=N, N$-diisopropylethylamine; DMAP $=4$-(dimethylamino)pyridine; $\mathrm{DMF}=N, N$-dimethylformamide; DMSO = dimethyl sulfoxide; DTT $=$ dithiotreitol; FPP $=$ farnesyl pyrophosphate; GGPP = geranylgeranyl pyrophosphate; $\mathrm{GTP}=$ guanosine triphosphate; $\mathrm{HOBt}=1$-hydroxybenzotriazole; $\mathrm{NMP}=\mathrm{N}$-methyl-2-pyrrolidinone; $\mathrm{PFT}=$ protein:farnesyl transferase; PGGT-1 = protein:geranylgeranyl transferase-1; SDS = sodium dodecyl sulfate; SPPS $=$ solid-phase peptide synthesis; and TFA $=$ trifluoroacetic acid.

General Procedure 1. Manual Coupling of Building Blocks D01, D03, D04, D15 and D18. A 1.0-g portion of Wang resin (0.81 mmol) was coevaporated $3 \times$ with anhydrous 1,4-dioxane (10 mL) and treated with a solution of the amino acid (2.0 equiv, 1.6 mmol) in DCM/DMF (3/1, $\mathrm{v} / \mathrm{v} ; c=0.1-0.15 \mathrm{M}$), DIC (2.4 equiv, $1.9 \mathrm{mmol}, 0.3 \mathrm{~mL}$), and DMAP (0.04 equiv, 5 mg). After shaking the mixture under argon for 6 h , the resin was washed with DCM; DMF; MeOH ; DCM ; and, finally, $\mathrm{Et}_{2} \mathrm{O}$. A second coupling step was performed employing 1.0 equiv of amino acid, and this time, the reaction mixture was shaken for 16 h . Subsequently, the resin was washed (DCM and DMF), capped (0.5 M $\mathrm{Ac}_{2} \mathrm{O}, 0.125 \mathrm{M}$ DIPEA, and 0.015 M HOBt in NMP), washed (DMF, MeOH, DCM , and $\mathrm{Et}_{2} \mathrm{O}$), and dried in vacuo. The loading of the resin $(0.3-0.5 \mathrm{mmol} / \mathrm{g})$ was determined as follows: To $1-2 \mathrm{mg}$ of resin in a volumetric flask (10 mL) was added a solution of piperidine/DMF ($1 / 4, \mathrm{v} / \mathrm{v}, 1.0$ mL), and the mixture was left for 15 min . The volume was
adjusted to 10 mL by addition of EtOH (HPLC grade), and the UV absorption was measured at 300 nm . The loading could then be calculated using formula A with $A_{300}=$ absorption at 300 nm (EtOH as reference), $V=$ volume of sample $(10 \mathrm{~mL})$, and $\mathrm{wt}=$ weight of employed resin $(1-2$ $\mathrm{mg})$.

$$
\begin{equation*}
\text { loading }\left(\mathrm{mmol} \mathrm{~g}^{-1}\right)=\frac{A_{300} \times V}{7.8 \times \mathrm{wt}} \tag{A}
\end{equation*}
$$

General Procedure 2. General Synthetic Protocol LaMOSS2 Robot. (1) Coupling Building Block D. Wang resin ($50 \mu \mathrm{~mol}$) was swelled with $2 \times 2 \mathrm{~mL}$ DCM and treated with 5.0 equiv of building block $\mathrm{D}(0.25 \mathrm{M}$ solution in NMP, 1.0 mL), 5.0 equiv DIC ($0.5 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in DCM), and 0.25 equiv DMAP ($0.5 \mathrm{~mL}, 0.025 \mathrm{M}$ solution in NMP). The reaction mixture was flushed with N_{2} for 3 h , after which the reagents were removed. This procedure was repeated; however, this time the reaction mixture was allowed to react for 16 h instead of 3 h . After washing with NMP $(1 \times 3$ and $3 \times 2 \mathrm{~mL}$), the resin was capped with 2 mL of 0.5 M $\mathrm{Ac}_{2} \mathrm{O}, 0.125 \mathrm{M}$ DIPEA, and 0.015 M HOBt in NMP $(2 \times 5$ $\min)$ and washed with NMP $(1 \times 3$ and $3 \times 2 \mathrm{~mL})$.
(2) Removal Fmoc. ${ }^{17}$ The resin was treated with 2 mL of 20% piperidine in NMP $(4 \times 2 \mathrm{~min})$ and washed with NMP $(1 \times 3$ and $3 \times 2 \mathrm{~mL})$.
(3) Coupling Building Block B and C. To the resin were added 5.0 equiv of a building block B or $\mathrm{C}(0.25 \mathrm{M}$ solution in NMP, 1.0 mL), 5.0 equiv of BOP/HOBt $(1 / 1,0.5 \mathrm{~mL}$, 0.5 M solution in NMP), and 10 equiv of DMAP (0.5 mL , 1.0 M solution in NMP). The reaction mixture was flushed with N_{2} for 45 min , after which the reagents were removed. This coupling procedure was repeated in the case of building blocks which are known to be difficult to couple (e.g., B06 or C05). The resin was washed (1×3 and $3 \times 2 \mathrm{~mL}$ NMP); capped with $2 \times 2 \mathrm{~mL}$ of $0.5 \mathrm{M} \mathrm{Ac}_{2} \mathrm{O}, 0.125 \mathrm{M}$ DIPEA, and 0.015 M HOBt in NMP; and washed $(1 \times 3$ and 3×2 mL NMP).
(4) Coupling Building Block A. To the resin were added 5.0 equiv of a building block $\mathrm{A}(0.25 \mathrm{M}$ solution in NMP, 1.0 mL), 5.0 equiv of BOP/HOBt ($1 / 1,0.5 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in DCM $)$, and 10 equiv of DMAP $(0.5 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in NMP). The reaction mixture was flushed with N_{2} for 45 min , after which the reagents were removed. The

Table 1. Results of the One-Building Mutation Procedure for Generations 1-5

code	ABCD code	$\begin{gathered} \mathrm{A}^{a}(\%) \text { at } \\ 100 \mu \mathrm{M} \end{gathered}$		code	ABCD code	$\begin{gathered} \mathrm{A}^{a}(\%) \text { at } \\ 100 \mu \mathrm{M} \end{gathered}$
	Best 16 of Generation 0				Mutants (G1)	
G0-01	A21B21C01D15	71	\rightarrow	G1-01	A21B21C01D09	0
G0-02	A04B07C05D11	63	\rightarrow	G1-02	A04B17C05D11	10
G0-03	A19B12C01D15	55	\rightarrow	G1-03	A19B12C01D12	24
G0-04	A02B07C24D01	50	\rightarrow	G1-04	A02B17C24D01	0
G0-05	A02B06C21D01	49	\rightarrow	G1-05	A18B06C21D01	7
G0-06	A03B02C07D07	49	\rightarrow	G1-06	A03B02C14D07	39
G0-07	A10B03C04D15	48	\rightarrow	G1-07	A10B03C04D06	26
G0-08	A21B01C02D18	41	\rightarrow	G1-08	A21B22C02D18	0
G0-09	A21B21C01D04	40	\rightarrow	G1-09	A21B21C24D04	48
G0-10	A07B07C07D01	30	\rightarrow	G1-10	A07B07C07D08	0
G0-11	A16B11C21D11	29	\rightarrow	G1-11	A16B05C21D11	32
G0-12	A07B11C24D05	25	\rightarrow	G1-12	A07B11C22D05	0
G0-13	A04B03C05D11	23	\rightarrow	G1-13	A04B03C17D11	11
G0-14	A15B03C10D01	21	\rightarrow	G1-14	A15B03C05D01	19
G0-15	A10B04C05D03	20	\rightarrow	G1-15	A10B04C05D08	41
G0-16	A24B01C23D01	20	\rightarrow	G1-16	A24B01C23D08	0
	Best 16 after 1 Generation				Mutants (G2)	
G0-01	A21B21C01D15	71	\rightarrow	G2-01	A21B21C20D15	62
G0-02	A04B07C05D11	63	\rightarrow	G2-02	A04B07C21D11	22
G0-03	A19B12C01D15	55	\rightarrow	G2-03	A19B12C01D09	0
G0-04	A02B07C24D01	50	\rightarrow	G2-04	A02B07C12D01	22
G0-05	A02B06C21D01	49	\rightarrow	G2-05	A02B06C15D01	29
G0-06	A03B02C07D07	49	\rightarrow	G2-06	A03B02C12D07	53
G0-07	A10B03C04D15	48	\rightarrow	G2-07	A10B13C04D15	0
G1-09	A21B21C24D04	48	\rightarrow	G2-08	A21B02C24D04	0
G1-15	A10B04C05D08	41	\rightarrow	G2-09	A10B14C05D08	75
G0-08	A21B01C02D18	41	\rightarrow	G2-10	A05B01C02D18	51
G0-09	A21B21C01D04	40	\rightarrow	G2-11	A21B20C01D04	4
G1-06	A03B02C14D07	39	\rightarrow	G2-12	A03B02C14D16	95
G1-11	A16B05C21D11	32	\rightarrow	G2-13	A16B05C03D11	0
G0-10	A07B07C07D01	30	\rightarrow	G2-14	A07B07C10D01	18
G0-11	A16B11C21D11	29	\rightarrow	G2-15	A16B11C09D11	0
G1-07	A10B03C04D06	26	\rightarrow	G2-16	A10B06C04D06	0
	Best 16 after 2 Generations				Mutants (G3)	
G2-12	A03B02C14D16	95	\rightarrow	G3-01	A03B08C14D16	57
G2-09	A10B14C05D08	75	\rightarrow	G3-02	A10B11C05D08	20
G0-01	A21B21C01D15	71	\rightarrow	G3-03	A21B11C01D15	0
G0-02	A04B07C05D11	63	\rightarrow	G3-04	A04B07C05D01	59
G2-01	A21B21C20D15	62	\rightarrow	G3-05	A21B10C20D15	21
G0-03	A19B12C01D15	55	\rightarrow	G3-06	A19B12C01D16	44
G2-06	A03B02C12D07	53	\rightarrow	G3-07	A10B02C12D07	73
G2-10	A05B01C02D18	51	\rightarrow	G3-08	A05B01C04D18	22
G0-04	A02B07C24D01	50	\rightarrow	G3-09	A02B07C24D02	0
G0-05	A02B06C21D01	49	\rightarrow	G3-10	A02B06C21D18	2
G0-06	A03B02C07D07	49	\rightarrow	G3-11	A03B16C07D07	20
G0-07	A10B03C04D15	48	\rightarrow	G3-12	A10B16C04D15	62
G1-09	A21B21C24D04	48	\rightarrow	G3-13	A21B21C24D02	0
G1-15	A10B04C05D08	41	\rightarrow	G3-14	A07B04C05D08	0
G0-08	A21B01C02D18	41	\rightarrow	G3-15	A21B01C02D10	65
G0-09	A21B21C01D04	40	\rightarrow	G3-16	A21B21C12D20	62
	Best 16 after 3 Generations				Mutants (G4)	
G2-12	A03B02C14D16	95	\rightarrow	G4-01	A03B13C14D16	0
G2-09	A10B14C05D08	75	\rightarrow	G4-02	A10B14C04D08	73
G3-07	A10B02C12D07	73	\rightarrow	G4-03	A10B02C07D07	41
G0-01	A21B21C01D15	71	\rightarrow	G4-04	A21B20C01D15	71
G3-15	A21B01C02D10	65	\rightarrow	G4-05	A21B05C02D10	0
G0-02	A04B07C05D11	63	\rightarrow	G4-06	A24B07C05D11	7
G2-01	A21B21C20D15	62	\rightarrow	G4-07	A13B21C20D15	87
G3-12	A10B16C04D15	62	\rightarrow	G4-08	A10B14C04D15	87
G3-16	A21B21C12D04	62	\rightarrow	G4-09	A20B21C12D04	0
G3-04	A04B07C05D01	59	\rightarrow	G4-10	A22B07C05D01	0
G3-01	A03B08C14D16	57	\rightarrow	G4-11	A03B22C14D16	0
G0-03	A19B12C01D15	55	\rightarrow	G4-12	A19B12C16D15	67
G2-06	A03B02C12D07	53	\rightarrow	G4-13	A03B02C12D03	26
G2-10	A05B01C02D18	51	\rightarrow	G4-14	A05B01C16D18	0
G0-04	A02B07C24D01	50	\rightarrow	G4-15	A02B07C06D01	0
G0-05	A02B06C21D01	49	\rightarrow	G4-16	A02B19C21D01	21

Table 1 (Continued)

code	ABCD code	$\begin{aligned} & \mathrm{A}(\%) \text { at } \\ & 100 \mu \mathrm{M} \end{aligned}$		code	ABCD code	$\begin{gathered} \mathrm{A}(\%) \text { at } \\ 100 \mu \mathrm{M} \end{gathered}$	code	ABCD code	$\begin{aligned} & \mathrm{A}(\%) \text { at } \\ & 100 u \mathrm{M} \end{aligned}$	$\begin{gathered} \mathrm{A}(\%) \mathrm{at} \\ 10 \mu \mathrm{M} \end{gathered}$
Best 16 after 4 Generations				Mutants (G5)			Best 16 after 5 Generations			
G2-12	A03B02C14D16	95	\rightarrow	G5-01	A03B10C14D16	68	G2-12	A03B02C14D16	95	81
G4-07	A13B21C20D15	87	\rightarrow	G5-02	A17B21C20D15	72	G4-07	A13B21C20D15	87	53
G4-08	A10B14C04D15	87	\rightarrow	G5-03	A10B14C04D09	0	G4-08	A10B14C04D15	87	26
G2-09	A10B14C05D08	75	\rightarrow	G5-04	A10B14C15D08	73	G5-07	A02B20C01D15	80	60
G3-07	A10B02C12D07	73	\rightarrow	G5-05	A09B02C12D07	58	G2-09	A10B14C05D08	75	37
G4-02	A10B14C04D08	73	\rightarrow	G5-06	A10B10C04D08	1	G5-04	A10B14C15D08	73	0
G4-04	A21B20C01D15	71	\rightarrow	G5-07	A02B20C01D15	80	G3-07	A10B02C12D07	73	22
G0-01	A21B21C01D15	71	\rightarrow	G5-08	A21B10C01D15	48	G4-02	A10B14C04D08	73	26
G4-12	A19B12C16D15	67	\rightarrow	G5-09	A19B04C16D15	50	G5-02	A17B21C20D15	72	64
G3-15	A21B01C02D10	65	\rightarrow	G5-10	A21B01C03D10	17	G4-04	A21B20C01D15	71	39
G0-02	A04B07C05D11	63	\rightarrow	G5-11	A04B07C19D11	10	G0-01	A21B21C01D15	71	40
G2-01	A21B21C20D15	62	\rightarrow	G5-12	A21B21C04D15	43	G5-01	A03B10C14D16	68	97
G3-12	A10B16C04D15	62	\rightarrow	G5-13	A10B16C18D15	35	G4-12	A19B12C16D15	67	32
G3-16	A21B21C12D04	62	\rightarrow	G5-14	A21B05C12D04	54	G3-15	A21B01C02D10	65	18
G3-04	A04B07C05D01	59	\rightarrow	G5-15	A04B07C05D07	0	G0-02	A04B07C05D11	63	40
G3-01	A03B08C14D16	57	\rightarrow	G5-16	A20B08C14D16	16	G2-01	A21B21C20D15	62	29

${ }^{a} \mathrm{~A}=$ activity of enzyme (PGGT-1) at 100 or $10 \mu \mathrm{M}$ of compound, expressed as percent of control activity.
Scheme 3. Mutational Development of A03B02C14D16 (G2-12) and A03B10C14D16 (G5-01)

resin was washed (1×3 and $3 \times 2 \mathrm{~mL}$ NMP), capped ($2 \times$ 2 mL of $0.5 \mathrm{M} \mathrm{Ac}_{2} \mathrm{O} / 0.125 \mathrm{M}$ DIPEA/0.015 M HOBt in NMP), and washed (2 mL of DCM; 2 mL of $\mathrm{MeOH}(3 \times$); $1 \times 3 \mathrm{~mL}$ and $3 \times 2 \mathrm{~mL}$ of DCM).
(5) Cleavage from Resin. To the resin was added 3 mL of $\mathrm{TFA} / \mathrm{H}_{2} \mathrm{O} / \mathrm{Pr}_{3} \mathrm{SiH}\left(95 / 4 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}\right.$) under N_{2} flushing. After 2 h , the TFA solution was collected in a tube, and the resin was rinsed with $\mathrm{TFA} / \mathrm{H}_{2} \mathrm{O} /{ }^{/} \mathrm{Pr}_{3} \mathrm{SiH}(95 / 4 / 1, \mathrm{v} / \mathrm{v} / \mathrm{v}, 2 \times$ 2 mL).
(6) Workup Procedure. The filtrate is concentrated in vacuo, dissolved in 4 mL of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN} / / \mathrm{BuOH}(1 / 1 / 1, \mathrm{v} / \mathrm{v} /$ v), analyzed by LC/MS, and purified by RP-HPLC (Tables 3-5 list LC/MS data for compounds of generations 1-5).

Spectroscopic and Spectrometric Data of Compounds Representative for the Synthesized Library. A03B02C14D16 (G2-12). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $8.86(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 8.73(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=4.0$ $\mathrm{Hz}), 7.81(\mathrm{~m}), 7.36(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.96$ $(\mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 6.62(\mathrm{~d}, 1 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 5.36(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 4.47(\mathrm{~m}, 1 \mathrm{H}), 4.16-3.96(\mathrm{~m}, 6 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 3.32$ and $3.12(2 \times \mathrm{s}), 2.76-2.67(2 \times \mathrm{m}), 2.49(\mathrm{~s}), 2.06(\mathrm{dd}$, $2 \mathrm{H}, J=6.8$ and 7.2 Hz$), 1.76(\mathrm{~m}, 3 \mathrm{H}), 1.56$ and $1.50(2 \times$ m), $1.22(\mathrm{bs}), 1.10(\mathrm{~s}), 0.86$ (apparent $\mathrm{t}, 3 \mathrm{H}, J=6.0$ and 6.8

Hz). Purity $>95 \%$, 20.4 mg (66% yield). LC/MS analysis: $t_{\mathrm{R}}=12.7 \mathrm{~min}$ (linear gradient B $05 \rightarrow 90 \%$, 26 min), (ESI) $m / z 618.6(\mathrm{M}+\mathrm{H})^{+}$. HR-MS: calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{5}+\right.$ $\mathrm{H}]^{+}$, 618.45945; found, 618.45972.

A03B10C14D16 (G5-01). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): 8.80(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.66(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 8.07 (m, 4H), $7.81(\mathrm{~m}), 7.35(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J=8.0$ $\mathrm{Hz}), 6.96(\mathrm{~d}, 1 \mathrm{H}), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.64(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.4 \mathrm{~Hz}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 5.27(\mathrm{~d}, 1 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 4.37(\mathrm{~m}, 2 \mathrm{H}), 4.17-3.96(\mathrm{~m}, 3 \mathrm{H}), 3.34$ and $3.16(2 \times$ s), 2.88-2.67 (m, 4H), $2.49(\mathrm{~s}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.71$ (m, 3H), 1.54-1.36 (m), 1.22 (bs), 1.10 (s), 0.84 (apparent $\mathrm{t}, 3 \mathrm{H}, J=6.0$ and 6.8 Hz). Purity $>95 \%, 23.5 \mathrm{mg}$, $(76 \%$ yield). LC/MS analysis: $t_{\mathrm{R}}=17.5 \mathrm{~min}$ (linear gradient B 5 $\rightarrow 90 \%, 26 \mathrm{~min}$), (ESI) $m / z 618.6(\mathrm{M}+\mathrm{H})^{+}$. HR-MS: calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{5}+\mathrm{H}\right]^{+}, 618.45945$; found, 618.45953 .

A10B11C05D08 (G3-02). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): 8.93(\mathrm{~s}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 7.94$ (apparent $\mathrm{t}, J=5.6$ and 6.0 Hz$), 7.71(\mathrm{~s}), 7.60(\mathrm{dd}, J=8.0$ and 8.4 Hz$), 7.47$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}), 7.38-7.28(\mathrm{~m}), 5.00(2 \times \mathrm{d}, 2 \mathrm{H}, J=12.8$ $\mathrm{Hz}), 4.47(\mathrm{dt}, J=4.8,8.0$ and 8.4 Hz$), 4.30(\mathrm{~m}), 3.23(\mathrm{dd}$, $J=4.4$ and 4.8 Hz), $3.09(\mathrm{~m}), 2.96-2.85(\mathrm{~m}), 2.02$ (apparent bt, $J=11.6$ and 12.0 Hz), 1.63 (apparent bt, $J=14.4$ and $15.2 \mathrm{~Hz}), 1.26(\mathrm{~s}), 1.17(\mathrm{~m}), 1.11(\mathrm{~s}), 0.78(\mathrm{dd}, J=12.4$

Table 2. Initial Pool of Compounds and Their Inhibition Potency against PGGT-1 ${ }^{a}$

ABCD code	$\mathrm{A}^{b}(\%)$ at $100 \mu \mathrm{M}$	ABCD code	$\mathrm{A}^{b}(\%)$ at $100 \mu \mathrm{M}$	ABCD code	$\mathrm{A}^{b}(\%)$ at $100 \mu \mathrm{M}$
A21B21C01D15	71	A16B11C21D11	29	A24B21C04D18	10
A04B07C05D11	63	A07B11C24D05	25	A04B13C24D01	9
A19B2C01D15	55	A04B03C05D11	23	A04B3C19D11	9
A02B07C24D01	50	A15B03C10D01	21	A01B03C24D01	4
A02B06C21D01	49	A10B04C05D03	20	A21B12C01D03	3
A03B02C07D07	49	A24B01C23D01	20	A19B15C02D10	0
A10B03C04D15	48	A21B16C09D01	19	A15B02C21D01	0
A21B01C02D18	41	A21B03C24D01	16	A07B11C05D13	0
A21B21C01D04	40	A16B03C19D11	16	A12B03C10D03	0
A07B07C07D01	30	A10B02C24D03	14	A24B01C08D03	0

${ }^{a}$ This set of 30 compounds was synthesized according to general procedure 2 (see building blocks, Charts 1-4). All compounds have been analyzed by LC/MS and purified by RP-HPLC (295% purity). ${ }^{b} \mathrm{~A}=$ activity of enzyme at $100 \mu \mathrm{M}$ of compound: expressed as percent of control activity (without test compound).

Table 3. LC/MS Data (t_{R} and $[\mathrm{M}+\mathrm{H}]^{+}$) of Compounds from Generations 1 and 2

compound	[M+H] ${ }^{+}$	$t_{\mathrm{R}}(\mathrm{min})^{a}$	yield (\%) ${ }^{\text {b }}$	compound	$[\mathrm{M}+\mathrm{H}]^{+}$	$t_{\mathrm{R}}(\mathrm{min})^{c}$	yield (\%) ${ }^{\text {b }}$
A21B21C01D09	392.2	8.2	42	A21B21C20D15	680.4	10.2	1
A04B17C05D11	519.4	9.8	54	A04B07C21D11	533.4	12.2^{a}	98
A19B12C01D12	463.2	9.0	56	A19B12C01D09	414.2	8.6	94
A02B17C24D01	495.3	10.2	89	A02B07C12D01	583.5	13.6	34
A18B06C21D01	374.1	7.9	28	A02B06C15D01	541.4	10.9	79
A03B02C14D07	671.8	13.8	38	A03B02C12D07	702.6	$25.9{ }^{\text {a }}$	22
A10B03C04D06	531.3	10.6	38	A10B13C04D15	853.6	6.9	1
A21B22C02D18	587.5	8.9	1	A21B02C24D04	607.4	8.0	35
A21B21C24D04	463.2	10.2	,	A10B14C05D08	678.4	11.5	60
A07B07C07D08	657.7	12.4	45	A05B01C02D18	424.1	2.3	28
A16B05C21D11	432.2	2.4	98	A21B20C01D04	567.2	9.3	14
A07B11C22D05	536.2	11.5	49	A03B02C14D16	618.6	$12.7{ }^{\text {a }}$	66
A04B03C17D11	477.3	8.5	42	A16B05C03D11	460.2	2.1	89
A15B03C05D01	500.4	20.5	68	A07B07C10D01	594.4	15.5	38
A10B04C05D08	678.3	8.4	48	A16B11C09D11	519.4	7.9	71
A24B01C23D08	493.3	8.8	43	A10B06C04D06	503.3	8.5	94

${ }^{a}$ Linear gradient B $05 \rightarrow 90 \%$, 26 min . ${ }^{b}$ Nonoptimized yields. All compounds were $\geq 95 \%$ pure as determined by LC/MS. ${ }^{c}$ Unless stated otherwise: linear gradient B $05 \rightarrow 50 \%, 26 \mathrm{~min}$.

Table 4. LC/MS Data (t_{R} and $[\mathrm{M}+\mathrm{H}]^{+}$) of Compounds from Generations 3 and 4^{a}

compound	$[\mathrm{M}+\mathrm{H}]^{+}$	$t_{\mathrm{R}}(\mathrm{min})$	$\mathrm{yield}^{2}(\%)^{b}$	compound	$[\mathrm{M}+\mathrm{H}]^{+}$	$t_{\mathrm{R}}(\mathrm{min})$	yield $(\%)^{b}$
A03B08C14D16	644.5	18.8	30	A03B13C14D16	643.3	22.6	98
A10B11C05D08	706.4	13.1	81	A10B14C04D08	664.2	12.2	98
A21B11C01D15	471.3	11.8	6	A10B02C07D07	687.5	11.2	60
A04B07C05D01	534.3	17.5	89	A21B20C01D15	491.2	13.0	70
A21B10C20D15	667.3	13.1	4	A21B05C02D10	529.5	9.9	98
A19B12C01D16	433.1	15.6	62	A24B07C05D11	541.3	12.7	98
A10B02C12D07	735.4	1.6	37	A13B21C20D15	712.5	11.1	6
A05B01C04D18	382.1	1.9	35	A10B14C04D15	639.2	8.8	31
A02B07C24D02	536.2	12.4	98	A20B21C12D04	695.4	11.7	98
A02B06C21D18	491.1	9.0	34	A22B07C05D01	490.2	13.9	98
A03B16C07D07	615.5	27.0	64	A03B22C14D16	646.5	16.7	54
A10B16C04D15	585.2	9.0	14	A19B12C16D15	650.3	12.0	13
A21B21C24D02	505.3	11.8	51	A03B02C12D03	645.4	20.1	80
A07B04C05D08	601.3	16.9	81	A05B01C16D18	494.2	10.4	15
A21B01C02D10	416.1	12.0	37	A02B07C06D01	553.3	12.6	98
A21B21C12D20	680.4	13.9	48	A02B19C21D01	469.1	11.6	37

[^1]and 12.8 Hz). Purity $>95 \%$, 28.6 mg (81% yield). LC/MS analysis: $t_{\mathrm{R}}=12.2 \mathrm{~min}$ (linear gradient $\mathrm{B} 05 \rightarrow 90 \%, 26$ min), (ESI) $\mathrm{m} / \mathrm{z} 706.4(\mathrm{M}+\mathrm{H})^{+}$.

A21B21C24D02 (G3-13). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): 7.76(\mathrm{~m}), 7.27(\mathrm{~m}), 7.17(\mathrm{~m}), 6.54(\mathrm{~s}), 3.00(\mathrm{~m}), 2.52$ $(\mathrm{m}), 2.04(\mathrm{~m}), 1.77(\mathrm{~m}), 1.45(\mathrm{~m}), 1.37(\mathrm{~m}), 1.20(\mathrm{~m})$. Purity $>95,12.9 \mathrm{mg}(51 \%$ yield $)$. LC/MS analysis: $t_{\mathrm{R}}=11.8 \mathrm{~min}$
(linear gradient $\mathrm{B} 05 \rightarrow 90 \%, 26 \mathrm{~min}$), (ESI) $m / z 505.3$ (M $+\mathrm{H})^{+}$.

A07B04C05D08 (G3-14). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): 8.10(\mathrm{dd}, 2 \mathrm{H}, J=1.6$ and 2.0 Hz$), 7.85(\mathrm{~d}, 1 \mathrm{H}, J=5.6$ $\mathrm{Hz}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=8.0$ and 12.8 Hz$), 7.47(\mathrm{dd}, 2 \mathrm{H}, J=$ 3.2 and 8.4 Hz$), 4.50-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~d}, 1 \mathrm{H}, J=13.6$ $\mathrm{Hz}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}$,

Table 5. LC/MS Data (t_{R} and $[\mathrm{M}+\mathrm{H}]^{+}$) and Yields of Compounds from Generation 5^{a}

compound	$[\mathrm{M}+\mathrm{H}]^{+}$	$t_{\mathrm{R}}(\mathrm{min})$	yield $(\%)^{b}$	compound	$[\mathrm{M}+\mathrm{H}]^{+}$	$t_{\mathrm{R}}(\mathrm{min})$	yield $(\%)^{b}$
A03B10C14D16	618.6	17.5	76	A19B04C16D15	628.5	14.9	7
A17B21C20D15	930.5	13.7	4	A21B01C03D10	401.1	10.6	
A10B14C04D09	586.3	9.6	98	A04B07C19D11	601.5	14.0	
A10B14C15D08	780.4	15.0	96	A21B21C04D15	516.2	11.4	98
A09B02C12D07	582.3	14.1	17	A10B16C18D15	683.4	8.9	10
A10B10C04D08	653.6	11.3	98	A21B05C12D04	681.4	11.1	26
A02B20C01D15	494.1	10.8	7	A04B07C05D07	605.5	18	
A21B10C01D15	432.1	9.2	11	A20B08C14D16	567.3	8.2	13

${ }^{a}$ Linear gradient B $05 \rightarrow 90 \%, 26 \mathrm{~min}$. ${ }^{b}$ Nonoptimized yields. All compounds were $\geq 95 \%$ pure as determined by LC/MS.
$1 \mathrm{H}), 1.78$ (bd, $J=13.2 \mathrm{~Hz}$), 1.63 (bt, $J=10.4 \mathrm{~Hz}$), $1.44-$ $1.30(\mathrm{~m}, 8 \mathrm{H}), 1.10(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right): 174.4,173.6,172.9,156.2,146.6,131.1,123.5,56.2$, 53.3, 46.3, 41.6, 41.5, 36.8, 29.3, 28.5, 25.5, 25.2. Purity $>95 \%, 24.3 \mathrm{mg}$ (81% yield). LC/MS analysis: $t_{\mathrm{R}}=16.9$ min (linear gradient B $05 \rightarrow 90 \%$, 26 min), (ESI) $\mathrm{m} / \mathrm{z} 601.3$ $(\mathrm{M}+\mathrm{H})^{+}$.

A02B17C24D01 (G1-04). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): 8.76(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.30(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $8.12(\mathrm{~m}, 3 \mathrm{H}), 8.00(\mathrm{t}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 4.49(\mathrm{dd}, 1 \mathrm{H}, J=$ 6.4 and 6.8 Hz$), 4.38(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.65(2$ $\times \mathrm{d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 2.50(\mathrm{~m}), 2.10(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $1.74(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.20(\mathrm{~m}, 9 \mathrm{H}), 0.85$ (apparent $\mathrm{t}, 3 \mathrm{H}, J=$ 6.0 and 6.8 Hz). ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}): 173.0, $172.2,171.8,165.2,149.5,140.4,129.6,123.8,54.2,49.0$, $38.8,36.7,35.1,31.9,29.0,28.4,23.0,22.3,14.4$. Purity $>95 \%, 22.0 \mathrm{mg}$ (89% yield). LC/MS analysis: $t_{\mathrm{R}}=10.2$ min (linear gradient B $05 \rightarrow 90 \%$, 26 min), (ESI) $\mathrm{m} / \mathrm{z} 495.3$ $(\mathrm{M}+\mathrm{H})^{+}$.

A16B11C09D11 (G2-15). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): 8.53(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 8.33(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz})$, $7.82(\mathrm{~d}, 3 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.70(\mathrm{bs}, 3 \mathrm{H}), 7.30(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.89$ (apparent $\mathrm{t}, 2 \mathrm{H}, J=6.0$ and 6.4 Hz), 2.78 (bs, 2H), 2.41 (apparent $\mathrm{t}, 2 \mathrm{H}, J=6.4$ and 7.2 Hz), 2.31 (apparent $\mathrm{t}, 2 \mathrm{H}$, $J=6.4$ and 7.2 Hz$), 2.12(\mathrm{bt}, 1 \mathrm{H}, J=12.0 \mathrm{~Hz}), 1.79(\mathrm{~m}$, $6 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $174.4,174.2,171.3,166.8$, 144.0, 132.8, 128.0, 127.1, 52.7, 45.2, 44.5, 42.0, 37.6, 30.5, $30.1,29.7,29.3,27.0,23.3$. Purity $>95 \%, 18.4 \mathrm{mg}$ (71% yield). LC/MS analysis: $t_{\mathrm{R}}=7.9 \mathrm{~min}$ (linear gradient B 05 $\rightarrow 50 \%, 26 \mathrm{~min}$), (ESI) $\mathrm{m} / \mathrm{z} 519.4(\mathrm{M}+\mathrm{H})^{+}$.

A15B03C05D01 (G1-14). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (apparent $\mathrm{t}, 1 \mathrm{H}, J=4.8$ and 5.2 Hz), $7.52(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.00(\mathrm{~m}$, $2 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.10$ (m), 0.86 (apparent $\mathrm{t}, 3 \mathrm{H}, J=6.0$ and 6.8 Hz). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): 174.1, 173.0, 172.6, 172.4, 56.1, $48.9,38.6,35.9,35.5,31.8,29.5,29.2,25.8,25.1,23.0,22.6$, 14.1. Purity $>95 \%, 17.0 \mathrm{mg}$ (68% yield). LC/MS analysis: $t_{\mathrm{R}}=20.5 \mathrm{~min}$ (linear gradient $\mathrm{B} 05 \rightarrow 90 \%, 26 \mathrm{~min}$), (ESI) $\mathrm{m} / \mathrm{z} 500.4(\mathrm{M}+\mathrm{H})^{+}$.

A16B05C21D11 (G1-11). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): 8.44(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 8.23(\mathrm{dd}, 2 \mathrm{H}, J=8.0$ and 8.4 Hz), 7.76 (bs), 4.71 (m, 1H), $4.60(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~d}, 1 \mathrm{H}, J=$ $17.2 \mathrm{~Hz}), 4.17(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 3.88$ $(\mathrm{dd}, 2 \mathrm{H}, J=16.0$ and 17.2 Hz$), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~m}), 1.76-$ 1.20 (m). Purity $>95 \%, 21.1 \mathrm{mg}$ (98% yield). LC/MS
analysis: $t_{\mathrm{R}}=2.4 \mathrm{~min}$ (linear gradient $\mathrm{B} 05 \rightarrow 90 \%$, 26 min), (ESI) $m / z 432.2(\mathrm{M}+\mathrm{H})^{+}$.

Procedure Pilot Assay. ${ }^{18}$ Determination of PGGT-1 activity was performed by using a sepharose-coupled octapeptide as substrate. The amino acid sequence of the peptide was Met-Gly-Leu-Pro-Cys-Val-Val-Leu containing the Cterminal $\mathrm{Ca}_{1} \mathrm{a}_{2} \mathrm{~L}$ motif, which is the consensus sequence for geranylgeranylation by PGGT-1. This substrate has been designated as pepCsep. PepDsep, another sepharose-coupled peptide which is nonisoprenylatable by replacing Cys with Ala, was used as a control to measure nonspecific association of radiolabeled GGPP. A partial purified PGGT-1 enzyme preparation, isolated from bovine brain according to Yokoyama et al. ${ }^{19}$ was used in the assay. The incubation mixture ($25 \mu \mathrm{~L}$) contained $2.5 \mu \mathrm{~L}$ of pepCsep or pepDsep (1 nmol of peptides), $3 \mu \mathrm{~L}$ of bovine brain enzyme, $1 \mu \mathrm{M}\left[{ }^{3} \mathrm{H}\right]$-GGPP (specific radioactivity $15 \mathrm{Ci} / \mathrm{mmol}$, American Radiolabeled Chemicals), $50 \mu \mathrm{M} \mathrm{ZnCl} 2,0.5 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ DTT, 0.004% Triton X-100, and 50 mM Tris- HCl (pH 7.4). For the determination of the inhibitory potencies of the various compounds, three different concentrations were used (in duplo) in the mixture (for generations $0-4: 10,100$, and $1000 \mu \mathrm{M}$; generations 5-7: 3, 10, and $100 \mu \mathrm{M})$. The incubation was performed at $37^{\circ} \mathrm{C}$ for 40 min under continuous shaking. The reaction was terminated by addition of 1 mL of 2% (w/v) SDS, and the beads were spun down and washed successively 3 times with 2% (w/v) SDS under shaking for 45 min at $50{ }^{\circ} \mathrm{C}$. The remaining adhering radioactivity was counted in a Liquid Scintillation Counter. For the calculation of PGGT-1 activity, the ${ }^{3} \mathrm{H}$ counts bound to pepDsep were subtracted from the counts bound to pepCsep. For the determination of the IC_{50} values of the test compounds, the assay was repeated 2 times in the presence of the various concentrations of the compounds, and the concentration at 50% inhibition was determined using a mathematical function fitting to the concentration/inhibition curves.

Acknowledgment. This research was supported by The Netherlands Technology Foundation (STW, Project GC 790.35.356) and The Netherlands Organization for Scientific Research (NWO). The authors thank Kees Erkelens and Fons Lefeber (NMR) and Bertil Hofte (HR-MS).

Supporting Information Available. NMR spectra of 20 library compounds, together with some details of the Lamoss2 synthesizer. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) (a) Roskoski Jr, R. Biochem. Biophys. Res. Commun. 2003, 303, 1-7. (b) Hao, D.; Rowinsky, E. K. Cancer Invest. 2002, 20, 387-404. (c) Tamanoi, F.; Sigman, D. S. Editors of the Enzymes, 3rd ed.; Academic Press: San Diego, CA 2001; Vol 21.
(2) Hinterding, K.; Alonso-Díaz, D.; Waldmann, H. Angew. Chem., Int. Ed. 1998, 37, 688-749.
(3) Donovan, S.; Shannon, K. M.; Bollag, G. Biochim. Biophys. Acta 2002, 1602, 23-45.
(4) For recent reviews covering the development of PFT and PGGT inhibitors, see: (a) Dinsmore, C. J.; Bell, I. M. Curr. Top. Med. Chem. 2003, 3, 1075-1093. (b) Ohkanda, J.; Knowles, D. B.; Blaskovich, M. A.; Sebti, S. M.; Hamilton, A. D. Curr. Top. Med. Chem. 2002, 2, 303-323. (c) AyralKaloustian, S.; Salaski, E. J. Curr. Med. Chem. 2002, 9, 1003-1032. (d) Gibbs, R. A.; Zahn, T. J.; Sebolt-Leopold, J. S. Curr. Med. Chem. 2001, 8, 1437-1465.
(5) Park, H.-W.; Boduluri, S. R.; Moomaw, J. F.; Casey, P. J.; Beese, L. S. Science 1997, 275, 1800-1804.
(6) (a) Mazieres, J.; Pradines, A.; Favre, G. Cancer Lett. 2004, 206, 159-167. (b) Russo, P.; Loprevite, M.; Cesario, A.; Ardizzoni, A. Curr. Med. Chem.- Anti-Cancer Agents 2004, 4, 123-138. (c) The potent and selective PFT inhibitor R115777 (Tipifarnib, Zarnestra) has been submitted to the U.S. Food and Drug Administration (FDA) for approval for the treatment of acute myeloid leukemia. See: http:// www.drugs.com/nda/tipifarnib_050124.html. (d) End, D. W.; Smets, G.; Todd, A. V.; Applegate, T. L.; Fuery, C. J.; Angibaud, P.; Venet, M.; Sanz, G.; Poignet, H.; Skrzat, S.; Devine, A.; Wouters, W.; Bowden, C. Cancer Res. 2001, 61, 131-137. (e) Reid, T. S.; Beese, L. S. Biochemistry 2004, 43, 6877-6884.
(7) Taylor, J. S.; Reid, T. S.; Terry, K. L.; Casey, P. J.; Beese, L. S. EMBO J. 2003, 22, 5963-5974.
(8) (a) Marson, C. M.; Rioja, A. S.; Brooke, G.; Coombes, R. C.; Vigushin, D. M. Bioorg. Med. Chem. Lett. 2002, 12, 255-259. (b) Lerner, E. C.; Qian, Y.; Hamilton, A. D.; Sebti, S. M. J. Biol. Chem. 1995, 270, 26770-26773. (c) McGuire, T. F.; Qian, Y.; Vogt, A.; Hamilton, A. D.; Sebti, S. M. J. Biol. Chem. 1996, 271, 27402-27407. (d) James, G. L.; Goldstein, J. L.; Brown, M. S. J. Biol. Chem. 1995, 270, 6221-6226. (e) Sun, J.; Qian, Y.; Hamilton, A. D.; Sebti, S. M. Oncogene 1998, 16, 1467-1473. (f) Lerner, E. C.; Zhang, T.-T.; Knowles, D. B.; Qian, Y.; Hamilton, A. D.; Sebti, S. M. Oncogene 1997, 15, 1283-1288. (g) Rowell, C. A.; Kowalczyk, J. J.; Lewis, M. D.; Garcia, A. M. J. Biol. Chem. 1997, 272, 14093-14097. (h) Whyte, D. B.; Kirschmeier, P.; Hockenberry, T. N.; Nunez-Oliva, I.; James, L.; Catino, J. J.; Bishop, W. R.; Pai, J.-K. J. Biol. Chem. 1997, 272, 14459-14464.
(9) (a) Morgan, M. A.; Wegner, J.; Aydilek, E.; Ganser, A.; Reuter, C. W. M. Leukemia 2003, 17, 1508-1520. (b) Lobell, R. B.; Omer, C. A.; Abrams, M. T.; Bhimnathwala, H. G.; Brucker, M. J.; Buser, C. A.; Davide, J. P.; deSolms, S. J.; Dinsmore, C. J.; Ellis-Hutchings, M. S.; Kral, A. M.; Liu, D.; Lumma, W. C.; Machotka, S. V.; Rands, E.; Williams, T. M.; Graham, S. L.; Hartman, G. D.; Oliff, A. I.; Heimbrook, D. C.; Kohl, N. E. Cancer Res. 2001, 61, 8758-8768.
(10) (a) Finder, J. D.; Litz, J. L.; Blaskovich, M. A.; McGuire, T. F.; Qian, Y.; Hamilton, A. D.; Davies, P.; Sebti, S. M. J. Biol. Chem. 1997, 272, 13484-13488. (b) Walters, C. E.; Pryce, G.; Hankey, D. J. R.; Sebti, S. M.; Hamilton, A. D.; Baker, D.; Greenwood, J.; Adamson, P. J. Immunol. 2002, 168, 4087-4094. (c) Chakrabarti, D.; Azam, T.; DelVecchio, C.; Qiu, L. B.; Park, Y.; Allen, C. M. Mol. Biochem. Parasitol. 1998, 94, 175-184. (d) Chakrabarti, D.; Da Silva, T.; Barger, J.; Paquette, S.; Patel, H.; Patterson, S.; Allen, C. M. J. Biol. Chem. 2002, 277, 42066-42073. (e) van Beek,
E.; Löwik, C. W. G. M.; van der Pluijm, G.; Papapoulos, S J. Bone Miner. Res. 1999, 14, 722-729. (f) Fisher, J. E.; Rogers, M. J.; Halasy, J. M.; Luckman, S. P.; Hughes, D. E.; Masarachia, P. J.; Wesolowski, G.; Russell, R. G.; Rodan, G. A.; Reszka, A. A. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 133-138. (g) Cohen, L. H.; Pieterman, E.; van Leeuwen, R. E. W.; Negre-Aminou, P.; Valentijn, A. R. P. M.; Overhand, M.; van der Marel, G. A.; van Boom, J. H. Biochem. Pharmacol. 1999, 57, 365-373. (h) Cohen, L. H.; Pieterman, E.; van Leeuwen, R. E. W.; Burm, B. E. A.; van der Marel, G. A.; van Boom, J. H. Biochem. Pharmacol. 2000, 60, 1061-1068. (i) Ye, J.; Wang, C.; Sumpter, R., Jr.; Brown, M. S.; Goldstein, J. L.; Gale, M., Jr. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 15865-15870.
(11) (a) El Oualid, F.; Bruining, L.; Leroy, I. M.; Cohen, L. H.; van Boom, J. H.; van der Marel, G. A.; Overkleeft, H. S.; Overhand, M. Helv. Chim. Acta 2002, 85, 3455-3472. (b) El Oualid, F.; Burm, B. E. A.; Leroy, I. M.; Cohen, L. H.; van Boom, J. H.; van den Elst, H.; Overkleeft, H. S.; van der Marel, G. A.; Overhand, M. J. Med. Chem. 2004, 47, 3920-3923. (c) El Oualid, F.; Baktawar, J.; Leroy, I. M.; van den Elst, H.; Cohen, L. H.; van der Marel, G. A.; Overkleeft, H. S.; Overhand, M. Bioorg. Med. Chem. 2005, 13, 1463-1475 and references cited herein.
(12) (a) Wallace, A.; Koblan, K. S.; Hamilton, K.; Marquis-Omer, D. J.; Miller, P. J.; Mosser, S. D.; Omer, C. A.; Schaber, M. D.; Cortese, R.; Oliff, A.; Jackson, J. B.; Pessi, A. J. Biol. Chem. 1996, 271, 31306-31311. (b) Bogusky, M. J.; Culberson, J. C.; Pitzenberger, S. M.; Garsky, V. M.; Wallace, A.; Pessi, A.; Koblan, K. S. J. Pept. Res. 1999, 54, 66-73. (c) Scholten, J. D.; Zimmerman, K.; Oxender, M.; Sebolt-Leopold, J. S.; Gowan, R.; Leonard, D.; Hupe D. J. Bioorg. Med. Chem. 1996, 4, 1537-1543. (d) Leonard, D.; Schuler, K. R.; Poulter, C. J.; Eaton, S. R.; Sawyer, T. K.; Hodges, J. C.; Su, T.-Z.; Scholten, J. D.; Gowan, R. C.; Sebolt-Leopold, J. S.; Doherty, A. M. J. Med. Chem. 1997, 40, 192-200.
(13) Park, J. G.; Langenwalter, K. J.; Weinbaum, C. A.; Casey, P. J.; Pang, Y.-P. J. Comb. Chem. 2004, 6, 407-314.
(14) (a) Kamphausen, S.; Höltge, N.; Wirsching, F.; MorysWortmann, C.; Riester, D.; Goetz, R.; Thürk, M.; Schwienhorst, A. J. Comput.-Aided Mol. Des. 2002, 16, 551-567. (b) Gobbi, A.; Poppinger, D. Biotechnol. Bioeng. 1998, 61, 47-54. (c) Weber, L.; Wallbaum, S.; Broger, C.; Gubernator, K. Angew. Chem., Int. Ed. Engl. 1995, 34, 2280-2282. (d) Singh, J.; Ator, M. A.; Jaeger, E. P.; Allen, M. P.; Whipple, D. A.; Soloweij, J. E.; Chowdhary, S.; Treasurywala, A. M. J. Am. Chem. Soc. 1996, 118, 1669-1676. (e) Sheridan, R. P.; Kearsley, S. K. J. Chem. Inf. Comput. Sci. 1995, 35, 310320. (f) Weber, L. Curr. Opin. Chem. Biol. 1998, 2, 381385. (g) Hoh, C.; Dudziak, G.; Liese, A. Bioorg. Med. Chem. Lett. 2002, 12, 1031-1034. (h) Bräuer, S.; Almstetter, M.; Antuch, W.; Behnke, D.; Taube, R.; Furer, P.; Hess, S. J. Comb. Chem. 2005, 7, 218-226. (i) Illgen, K.; Enderle, T.; Broger, C.; Weber, L. Chem. Biol. 2000, 7, 433-441. (j) Teixidó, M.; Belda, I.; Zurita, E.; Llorà, X.; Fabre, M.; Vilaró, S.; Albericio, F.; Giralt, E. J. Pept. Sci. 2005, in press (DOI: 10.1002/psc679). (k) Chen, G.; Zheng, S.; Luo, X.; Shen, J.; Zhu, W.; Liu, H.; Gui, C.; Zhang, J.; Zheng, M.; Puah, C. M.; Chen, K.; Jiang, H. J. Comb. Chem. 2005, 7, 398-406.
(15) (a) Lee, H. Y.; Sohn, J.-H.; Kwon, B.-M. Bioorg. Med. Chem. Lett. 2002, 12, 1599-1602. (b) Patel, D. V.; Patel, M. M.; Robinson, S. S.; Gordon, E. M. Bioorg. Med. Chem. Lett. 1994, 4, 1883-1888. (c) Kotharé, M. A.; Ohkanda, J.; Lockman, J. W.; Qian, Y.; Blaskovich, M. A.; Sebti, S. M.; Hamilton, A. D. Tetrahedron 2000, 56, 9833-9841.
(16) It is interesting to note that these types of compounds (i.e., A03B02C14D16 and A03B10C14D16) have been reported before and that they were found to act as bisubstrate inhibitors of PFT, in which the lipid part functions as an
isoprenyl mimic. See: (a) Schlitzer, M.; Sattler, I. Angew. Chem., Int. Ed. Engl. 1999, 38, 2032-2034. (b) Schlitzer, M.; Böhm, M.; Sattler, I. Bioorg. Med. Chem. 2000, 6, 2399-2406. (c) Mitsch, A.; Bergemann, S.; Gust, R.; Sattler, I.; Schlitzer, M. Arch. Pharm. Med. Chem. 2003, 396, 242250. We have recently reported (ref 11c) on the design of potential bisubstrate inhibitors of PGGT-1 with the same rationale presented in refs $16 \mathrm{a}-\mathrm{c}$. In addition, the oligopeptidic and naturally occurring PFT inhibitor Pepticinnamin E is known to act as a bisubstrate inhibitor. See: (d) Hinterding, K.; Hagenbuch, P.; Rétey, J.; Waldmann, H. Angew. Chem., Int. Ed. Engl. 1998, 37, 1236-1239.
(17) The yields of compounds containing building block D15 were found to be very low in some cases. LC/MS analysis indicated that a major side-product was formed during the Fmoc deprotection step with 20% piperidine in DMF. The m / z ratio of this side-product suggests that the monobenzylprotected phosphate group has been displaced by a piperidine moeity. See: (a) Pérez, M.; Pleixats, R. Tetrahedron 1995,

51, 8355-8362. (b) Wakamiya, T.; Saruta, K.; Yasuoka, J.; Kusumoto, S. Chem. Lett. 1994, 1099-1102. Although no attempts were undertaken to optimize the yield, there are two potential solutions for this problem. First, the duration of the deprotection step with piperidine can be shortened. Second, the nonnucleophilic base DBU (1,8-diazabicyclo-[5.4.0]undec-7-ene) can be employed instead of piperidine. See: (c) Wade, J. D.; Bedford, J.; Sheppard, R. C.; Tregear, G. W. Pept. Res. 1991, 4, 194-199. (d) Kates, S. A.; Solé, N. A.; Beyermann, M.; Barany, G.; Albericio, F. Pept. Res. 1996, 9, 106-113.
(18) This assay protocol is a minor modification of the assay protocol described in ref 10 g .
(19) Yokoyama, K.; Goodwin, G. W.; Ghomashchi, F.; Glomset, J. A.; Gelb, M. H. Proc. Natl. Acad. Sci. U.S.A. 1991, 88 , 5302-5306.

[^0]: * To whom correspondence should be addressed. Phone: $+31(0)$ 715274483. Fax: +31 (0)715274307. E-mail: overhand@chem.leidenuniv.nl.
 ${ }^{\dagger}$ Leiden University.
 \ddagger Gaubius Laboratory.
 § Both authors contributed equally to this study.

[^1]: ${ }^{a}$ Linear gradient B $05 \rightarrow 90 \%, 26 \mathrm{~min}$. ${ }^{b}$ Nonoptimized yields. All compounds were $\geq 95 \%$ pure as determined by LC/MS.

